Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 592
Filtrar
1.
Toxins (Basel) ; 16(2)2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38393173

RESUMO

Maize production in South Africa is concentrated in its central provinces. The Eastern Cape contributes less than 1% of total production, but is steadily increasing its production and has been identified as a priority region for future growth. In this study, we surveyed ear rots at maize farms in the Eastern Cape, and mycotoxins were determined to be present in collected samples. Fungal isolations were made from mouldy ears and species identified using morphology and DNA sequences. Cladosporium, Diplodia, Fusarium and Gibberella ear rots were observed during field work, and of these, we collected 78 samples and isolated 83 fungal strains. Fusarium was identified from Fusarium ear rot (FER) and Gibberella ear rot (GER) and Stenocarpella from Diplodia ear rot (DER) samples, respectively. Using LC-MS/MS multi-mycotoxin analysis, it was revealed that 83% of the collected samples contained mycotoxins, and 17% contained no mycotoxins. Fifty percent of samples contained multiple mycotoxins (deoxynivalenol, 15-acetyl-deoxynivalenol, diplodiatoxin and zearalenone) and 33% contained a single mycotoxin. Fusarium verticillioides was not isolated and fumonisins not detected during this survey. This study revealed that ear rots in the Eastern Cape are caused by a wide range of species that may produce various mycotoxins.


Assuntos
Fumonisinas , Fusarium , Micotoxinas , Tricotecenos , Micotoxinas/análise , Zea mays/microbiologia , África do Sul , Cromatografia Líquida , Contaminação de Alimentos/análise , Doenças das Plantas/microbiologia , Espectrometria de Massas em Tandem , Fungos , Fumonisinas/análise , Fusarium/genética
2.
J Econ Entomol ; 117(2): 427-434, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38381585

RESUMO

Mycotoxins that contaminate grain can cause the devaluation of agricultural products and create health risks for the consumer. Fumonisins are one such mycotoxin. Produced primarily by Fusarium verticillioides (Hypocreales: Nectriaceae) (Nirenberg, 1976) on corn, fumonisins' economic impact can be significant by causing various diseases in livestock if contaminated corn is not monitored and removed from animal feed. Finding safe alternatives to the destruction and waste of contaminated grain and restoring its economic value is needed for a sustainable future. Safe reintroduction into the farm food web may be possible through a consumable intermediary such as insects. This study demonstrates the suitability of the house cricket, Acheta domesticus L., as an alternative protein source in domestic animal feed by quantifying fumonisin B1 (FB1) levels in their subsequent insect meal and frass. Small colonies of 2nd instar A. domesticus were reared to 5th instar adults on nutrient-optimized corn-based diets treated with 4 levels of FB1 from 0 to 20 ppm. Increasing levels of FB1 had no adverse effects on the survivorship or growth of A. domesticus. Insect meals prepared from A. domesticus had significantly lower levels of FB1, at 3%-5% of their respective diets, while frass did not differ significantly from their diet. The successful rearing to adulthood of A. domesticus on fumonisin-contaminated diet paired with lower levels of FB1 in their processed insect meal supports the idea that more sustainable agricultural practices can be developed through remediation of low-value mycotoxin-contaminated grain with safer, higher-value insects as livestock feed components.


Assuntos
Fumonisinas , Fusarium , Gryllidae , Micotoxinas , Animais , Fumonisinas/análise , Fumonisinas/metabolismo , Gado , Micotoxinas/análise , Ração Animal
3.
Ecotoxicol Environ Saf ; 270: 115944, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38184978

RESUMO

Food contaminated by mycotoxins has become a worldwide public problem with political and economic implications. Although a variety of traditional methods have been used to eliminate mycotoxins from agri-foods, the results have been somewhat less than satisfactory. As an emerging non-thermal processing technology, atmospheric cold plasma (ACP) has great potential for food decontamination. Herein, this review mainly presents the degradation efficiency of ACP on mycotoxins in vitro and agri-foods as well as its possible degradation mechanisms. Meanwhile, ACP effects on food quality, factors affecting the degradation efficiency and the toxicity of degradation products are also discussed. According to the literatures, ACP could efficiently degrade many mycotoxins (e.g., aflatoxin, deoxynivalenol, zearalenone, ochratoxin A, fumonisin, and T-2 toxin) both in vitro and various foods (e.g., hazelnut, peanut, maize, rice, wheat, barley, oat flour, and date palm fruit) with little effects on the nutritional and sensory properties of food. The degradation efficacy was dependent on many factors including ACP treatment parameter, working gas, mycotoxin property, and food substrate. The mycotoxin degradation by ACP was mainly attributed to the reactive oxygen and nitrogen species in ACP, which can damage the chemical bonds of mycotoxins, consequently reducing the toxicity of mycotoxins.


Assuntos
Fumonisinas , Micotoxinas , Gases em Plasma , Zearalenona , Micotoxinas/toxicidade , Gases em Plasma/química , Contaminação de Alimentos/análise , Fumonisinas/análise
4.
Artigo em Inglês | MEDLINE | ID: mdl-38227893

RESUMO

Fumonisins are one of the main problems affecting maize production in the Texas High Plains (THP), where its agroclimatic conditions make it a perennial hotspot for mycotoxin contamination. In 2017, a fumonisin outbreak in the THP maize motivated stakeholders' request to repeal a subsection of the Texas Administrative Code, §61.61(a)(7) (Fumonisin Rule), and its related Texas Feed Industry Memorandum (Memo 5-20), which previously permitted the blending of maize containing high fumonisin levels with maize containing ≥ 5 mg/kg under state authority, and pivot to FDA fumonisin guidance. Shortly after, the USDA Risk Management Agency (RMA's) reintroduced Discount Factors (DFs) in annual Special Provisions (SP) that outline price reductions related to fumonisin contamination in maize. In this research, we estimate the potential economic burden posed by these changes through a two-part approach. In part one, we construct a decision model that explores the final disposition of fumonisin-contaminated maize based on blending permissions, fumonisin levels, and crop insurance status. In part two, we estimate the economic impact by inserting output values of the decision model into financial equations that consider testing costs, transportation fees, and discounts from crop insurance and grain elevators when applicable. Our economic analysis projects that the financial losses during a THP crop year with high fumonisin levels could range from $15.1 to $135.5 million without the option to blend under conditions of the revised RMA discount schedule. Findings further highlight crop insurance as the most promising risk management strategy for farmers in areas susceptible to fumonisin contamination.


Assuntos
Fumonisinas , Fusarium , Micotoxinas , Humanos , Fumonisinas/análise , Zea mays , Texas , Contaminação de Alimentos/análise , Micotoxinas/análise
5.
Food Chem ; 438: 138004, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37983995

RESUMO

Fusarium verticillioides, a major fungal pathogen of maize, produces fumonisins, mycotoxins of global food safety concern. Control practices are needed to reduce the negative health and economic impacts of fumonisins. Therefore, we investigated volatile organic compounds (VOCs) emitted by fumonisin-producing (wild-type) and nonproducing (mutant) strains of F. verticillioides. VOC emissions were analyzed by gas chromatography-mass spectrometry following inoculation of maize kernels, and fumonisin accumulation was analyzed by high-performance liquid chromatography. Mutants emitted VOCs, including ethyl 3-methylbutanoate, that the wild type did not emit. In particular, ANOVA analysis showed significant differences between mutants and wild type for 4 VOCs which emission was correlated with absence of fumonisins. Exogenous ethyl 3-methylbutanoate reduced growth and fumonisin production in wild-type F. verticillioides, showing its potential in biocontrol. Together, our findings offer valuable insights into how mycotoxin production can impact VOC emissions from F. verticillioides and reveal a potential biocontrol strategy to reduce fumonisin contamination.


Assuntos
Fumonisinas , Fusarium , Micotoxinas , Compostos Orgânicos Voláteis , Fumonisinas/análise , Fusarium/genética , Zea mays/química
6.
Artigo em Inglês | MEDLINE | ID: mdl-38109413

RESUMO

This study reports levels of mycotoxins in sorghum from Niger State, Nigeria, and provides a comprehensive assessment of their potential health risks by combining mycotoxin levels and dietary exposure assessment. A total of 240 samples of red and white sorghum were collected from both stores and markets across four microclimatic zones. Fungal species were identified using a dilution plate method. Aflatoxins (AFs), deoxynivalenol, nivalenol, and ochratoxin (OTA) were quantified using HPLC, whereas cyclopiazonic acid, fumonisins (FUMs) and zearalenone were quantified using ELISA. A. flavus and A. fumigatus were dominant fungal species followed by F. verticilloides, A. oryzae and P. verrucosum. Aflatoxins (mean: 29.97 µg/kg) were detected in all samples, whereas OTA (mean: 37.5 µg/kg) and FUMs (mean: 3269.8 µg/kg) were detected in 72% and 50% of the samples, respectively. Mycotoxins frequently co-occurred in binary mixtures of AFs + OTA and AFs + FUMs. Dietary exposure estimates were highest for FUMs at 230% of TDI and margin of exposures (MOEs) for both AFs and OTA (<10,000) indicating a potential risk associated with combined exposure to AFs and OTA. The Risk of hepatocellular carcinoma cases (HCC/year) attributable to AFs and OTA exposure from sorghum was estimated to be 5.99 × 105 and 0.24 × 105 cases for HBsAg + individuals based on 13.6% HBV incidence. Similarly, the HCC/year for AFs and OTA were assessed to be 3.59 × 105 and 0.14 × 105 at an 8.1% prevalence rate. Therefore, the results of this study demonstrate the high prevalence and dietary exposure to mycotoxins through sorghum consumption, raising public health and trade concerns.


Assuntos
Aflatoxinas , Carcinoma Hepatocelular , Fumonisinas , Neoplasias Hepáticas , Micotoxinas , Sorghum , Humanos , Micotoxinas/análise , Exposição Dietética/análise , Nigéria , Níger , Contaminação de Alimentos/análise , Aflatoxinas/análise , Fumonisinas/análise , Grão Comestível/química
7.
Wei Sheng Yan Jiu ; 52(5): 762-768, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37802904

RESUMO

OBJECTIVE: To monitor fumonisins(FBs) in grains and grain products in Zhejiang and assess the exposure risks of FBs to local residents. METHODS: Liquid chromatography coupled with tandem mass spectrometry method was used to determine the occurrence of FBs in rice, millet, dried noodles, instant noodles, and maize grains, and food frequency questionnaires were used to collect the food consumption data of Zhejiang population. Then, the simple probability distribution model was used to assess the exposure risk. RESULTS: The levels of FBs in rice, millet, dried noodles and instant noodles were relatively low. The occurrence of FB_1, FB_2 and FB_3 in these foods was 0-23.7%, 0-16.7% and 0-5.4%, respectively, and the mean levels were not detected(ND)-22.36, ND-20.63 and ND-7.19 µg/kg correspondingly. However, the levels of FBs in maize grains were relatively high. The occurrence of FB_1, FB_2, and FB_3 in maize grains was 100%, 93.6% and 90.3%, respectively, and the mean levels were 638.99, 103.54 and 59.69 µg/kg correspondingly. In 12.9% of the maize grain samples, the levels of FBs were higher than the standard reference. The residents were at low exposure risk overall. The mean estimated daily intake(EDI) of FBs was far lower than the provisional maximum tolerable daily intake of 2 µg/(kg·BW·d). However, 0.30% of the residents were at high risk. Among people of different ages, the mean EDI of children, adults, and elderly were 0.43, 0.28 and 0.29 µg/(kg·BW·d) respectively, and children were in the highest exposure levels of FBs. Among the tested five foodstuffs, rice and maize grains were the main sources of FBs exposure. CONCLUSION: Except for maize grains, the levels of FBs in grains and grain products were relatively low, and Zhejiang residents were at low FBs exposure risk generally.


Assuntos
Grão Comestível , Fumonisinas , Adulto , Idoso , Criança , Humanos , Cromatografia Líquida , Grão Comestível/química , Contaminação de Alimentos/análise , Fumonisinas/análise , Fumonisinas/química , Espectrometria de Massas em Tandem , Zea mays/química , Medição de Risco
8.
J Agric Food Chem ; 71(44): 16752-16762, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37822021

RESUMO

Fumonisin B1 (FB1) is a representative form of fumonisin and is widely present in food and feed. Hydrolyzed fumonisin B1 (HFB1) emerges as a breakdown product of FB1, which is accompanied by FB1 alterations. While previous studies have primarily focused on the liver or kidney toxicity of FB1, with limited studies existing on its neurotoxicity and even fewer on the toxicity of HFB1, this study focuses on the neurotoxicity of FB1 and HFB1 exposure in mice investigated by the open field test, Morris water maze test, histopathological analysis, and nontargeted metabolomics. Further, the levels of oxidative stress-related indices, neurotransmitters, and sphingolipids in the brain were measured to analyze their correlation with behavioral outcomes. The results showed that both FB1 (5 mg/kg) and HFB1 (2.8 mg/kg) reduced autonomous exploratory behavior in mice, impaired spatial learning and memory, and caused mild abnormalities in the brain structure. Quantitative analysis further indicated that exposure to FB1 and HFB1 disrupted neurotransmitter homeostasis, exacerbated oxidative stress, and significantly increased the sphinganine/sphingosine (Sa/So) ratio. Moreover, HFB1 exhibited neurotoxic effects similar to those of FB1, emphasizing the need to pay attention to the neurotoxicity effect of HFB1. These findings underscore the importance of understanding the risks and potential neurological damage associated with FB1 and HFB1 exposure, highlighting the necessity for further research in this crucial field.


Assuntos
Fumonisinas , Camundongos , Animais , Fumonisinas/análise , Memória Espacial , Esfingolipídeos , Fígado/metabolismo
9.
J Food Prot ; 86(10): 100142, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37562513

RESUMO

Fusarium species infect maize crops leading to the production of fumonisin by their toxigenic members. Elimination of microbes is critical in mitigating further postharvest spoilage and toxin accumulation. The current study investigates the efficacy of a previously described multispectral sorting technique to analyze the reduction of fumonisin and toxigenic Fusarium species found contaminating maize kernels in Kenya. Maize samples (n = 99) were collected from six mycotoxin hotspot counties in Kenya (Embu, Meru, Tharaka Nithi, Machakos, Makueni, and Kitui County) and analyzed for aflatoxin and fumonisin using commercial ELISA kits. Aflatoxin levels in majority (91%) of the samples were below the 10 ng/g threshold set by the Kenya Bureau of Standards and therefore not studied further. The 23/99 samples that had >2,000 ng/g of fumonisin were selected for sorting. The sorter was calibrated using kernels sourced from Ghana to reject visibly high-risk kernels for fumonisin contamination using reflectance at nine distinct wavelengths (470-1,550 nm). Accepted and rejected streams were tested for fumonisin using ELISA, and the presence of toxigenic Fusarium using qPCR. After sorting, there was a significant (p < 0.001) reduction of fumonisin, by an average of 1.8 log ng/g (98%) and ranging between 0.14 and 2.7 log ng/g reduction (28-99.8%) with a median mass rejection rate of 1.9% (ranged 0% to 48%). The fumonisin rejection rate ranged between 0 and 99.8% with a median of 77%. There was also a significant reduction (p = 0.005) in the proportion of DNA represented by toxigenic Fusarium, from a mean of 30-1.4%. This study demonstrates the use of multispectral sorting as a potential postharvest intervention tool for the reduction of Fusarium species and preformed fumonisin. The spectral sorting approach of this study suggests that classification algorithms based on high-risk visual features associated with mycotoxin can be applied across different sources of maize to reduce fumonisin.


Assuntos
Aflatoxinas , Fumonisinas , Fusarium , Micotoxinas , Fumonisinas/análise , Zea mays , Contaminação de Alimentos/análise , Quênia , Micotoxinas/análise , Aflatoxinas/análise
10.
Mycotoxin Res ; 39(4): 379-391, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37442904

RESUMO

Fusarium species are common fungal pathogens of maize. Fusarium graminearum and Fusarium verticillioides, among others, can cause maize ear rot, and they are also mycotoxin producers. The aims of this work were to determine the frequency and diversity of Fusarium species in Uruguayan maize kernels, evaluate the toxigenic potential of the isolates, determine toxin contamination levels on freshly harvested grain, and assess the sensitivity of main Fusarium species against fungicides. Fusarium verticillioides was the most frequent species isolated, followed by Fusarium graminearum sensu stricto. Of F. verticillioides isolates studied for fumonisin production, 72% produced fumonisin B1 and 32% fumonisin B2. Considering in vitro toxin production by F. graminearum sensu stricto isolates, deoxynivalenol was the main toxin produced, followed by zearalenone and nivalenol. Fumonisins were the most frequently found toxins on freshly harvested maize samples (98% in 2018 and 86% in 2019), and also, fumonisin B1 was the toxin with highest concentration in both years studied (4860 µg/kg in 2018 and 1453 µg/kg in 2019). Deoxynivalenol and zearalenone were also found as contaminants. Metconazole and epoxiconazole were the most effective fungicides tested on F. verticillioides isolates. Fusarium graminearum sensu stricto isolates also were more sensitive to metconazole compared to other fungicides; nevertheless, epoxiconazole was less efficient in controlling this species. This is the first study that reports Fusarium species and mycotoxin contamination levels associated with maize grain in Uruguay. Its detection is the main step to develop management strategies in order to minimize fungal infection in maize crops.


Assuntos
Fumonisinas , Fungicidas Industriais , Fusarium , Micotoxinas , Zearalenona , Micotoxinas/análise , Zearalenona/análise , Zea mays/microbiologia , Uruguai , Contaminação de Alimentos/análise , Fumonisinas/análise , Grão Comestível/química
11.
Toxins (Basel) ; 15(7)2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37505713

RESUMO

In temperate world-wide regions, maize kernels are often infected with the fumonisin-producing fungus Fusarium verticillioides which poses food and feed threats to animals and humans. As maize breeding has been revealed as one of the main tools with which to reduce kernel contamination with fumonisins, a pedigree selection program for increased resistance to Fusarium ear rot (FER), a trait highly correlated with kernel fumonisin content, was initiated in 2014 with the aim of obtaining inbred lines (named EPFUM) with resistance to kernel contamination with fumonisins and adapted to our environmental conditions. The new released EPFUM inbreds, their parental inbreds, hybrids involving crosses of one or two EPFUM inbreds, as well as commercial hybrids were evaluated in the current study. The objectives were (i) to assess if inbreds released by that breeding program were significantly more resistant than their parental inbreds and (ii) to examine if hybrids derived from EPFUM inbreds could be competitive based on grain yield and resistance to FER and fumonisin contamination. Second-cycle inbreds obtained through this pedigree selection program did not significantly improve the levels of resistance to fumonisin contamination of their parental inbreds; however, most EPFUM hybrids showed significantly better resistance to FER and fumonisin contamination than commercial hybrids did. Although European flint materials seem to be the most promising reservoirs of alleles with favorable additive and/or dominance effects for resistance to kernel contamination with fumonisins, marketable new Reid × Lancaster hybrids have been detected as they combine high resistance and yields comparable to those exhibited by commercial hybrids. Moreover, the white kernel hybrid EPFUM-4 × EP116 exploits the genetic variability within the European flint germplasm and can be an alternative to dent hybrid cultivation because white flint grain can lead to higher market prices.


Assuntos
Fumonisinas , Fusarium , Animais , Humanos , Fumonisinas/análise , Melhoramento Vegetal , Fenótipo , Fungos , Zea mays/genética , Zea mays/microbiologia , Grão Comestível/química , Doenças das Plantas/microbiologia
12.
Toxins (Basel) ; 15(7)2023 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-37505741

RESUMO

Aflatoxins and fumonisins, commonly found in maize and maize-derived products, frequently co-occur and can cause dangerous illness in humans and animals if ingested in large amounts. Efforts are being made to develop suitable analytical methods for screening that can rapidly detect mycotoxins in order to prevent illness through early detection. A method for classifying contaminated maize by applying hyperspectral imaging techniques including reflectance in the visible and near-infrared (VNIR) and short-wave infrared (SWIR) regions, and fluorescence was investigated. Machine learning classification models in combination with different preprocessing methods were applied to screen ground maize samples for naturally occurring aflatoxin and fumonisin as single contaminants and as co-contaminants. Partial least squares-discriminant analysis (PLS-DA) and support vector machine (SVM) with the radial basis function (RBF) kernel were employed as classification models using cut-off values of each mycotoxin. The classification performance of the SVM was better than that of PLS-DA, and the highest classification accuracies for fluorescence, VNIR, and SWIR were 89.1%, 71.7%, and 95.7%, respectively. SWIR imaging with the SVM model resulted in higher classification accuracies compared to the fluorescence and VNIR models, suggesting that as an alternative to conventional wet chemical methods, the hyperspectral SWIR imaging detection model may be the more effective and efficient analytical tool for mycotoxin analysis compared to fluorescence or VNIR imaging models. These methods represent a food safety screening tool capable of rapidly detecting mycotoxins in maize or other food ingredients consumed by animals or humans.


Assuntos
Aflatoxinas , Fumonisinas , Micotoxinas , Humanos , Animais , Aflatoxinas/análise , Fumonisinas/análise , Zea mays , Imageamento Hiperespectral
13.
J Agric Food Chem ; 71(30): 11350-11364, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37466504

RESUMO

Rice spikelet rot disease (RSRD) caused by Fusarium proliferatum seriously reduces rice yield and produces mycotoxins that threaten human health. The root symbiotic endophytic fungus Phomopsis liquidambaris reduces RSRD incidence and fumonisins accumulation in grain by 21.5 and 9.3%, respectively, while the mechanism of disease resistance remains largely elusive. Here, we found that B3 significantly reduced the abundance of pathogen from 79.91 to 2.84% and considerably enriched resistant microbes Pseudomonas and Proteobacteria in the spikelet microbial community. Further study revealed that B3 altered the metabolites of spikelets, especially hordenine and l-aspartic acid, which played a key role in reshaping the microbiome and supporting the growth of the functional core microbe Pseudomonas, and inhibited the pathogen growth and mycotoxin production. This study provided a feasibility of regulating the function of aboveground microbial communities by manipulating plant subsurface tissues to control disease and mycotoxin pollutants in agricultural production.


Assuntos
Fumonisinas , Fusarium , Micotoxinas , Oryza , Humanos , Micotoxinas/metabolismo , Oryza/metabolismo , Fumonisinas/análise , Fungos/metabolismo , Grão Comestível/química
14.
Food Chem ; 429: 136903, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37487390

RESUMO

Ag3PO4 nanoparticles (NPs) was prepared through a facile coprecipitation method, and was first found to have excellent laccase-mimicking catalytic activity. The study confirms that Fumonisin B1 (FB1) can effectively hinder the production of superoxide anion (O2-) between Ag3PO4 NPs and dissolved oxygen, and further inhibit laccase-mimicking activity of Ag3PO4 NPs. Thus, a novel rapid colorimetric sensor for FB1 analysis in cereal was first established using laccase-mimicking activity as sensing signal. The absorbance variation of sensing solution is directly related to the amount of FB1, and the color change is further combined with smartphone for quantitively analysis of FB1. The limit of detection (LOD) of the sensor is determined as low as 1.73 µg·L-1, which is far lower than the maximum residue limits (MRLs) of FB1 set by European Commission and US Food and Drug Administration (FDA). The average recovery of 87.8-104.5% for FB1 detection was obtained in cereal.


Assuntos
Fumonisinas , Nanopartículas , Grão Comestível/química , Lacase/análise , Colorimetria/métodos , Fumonisinas/análise , Nanopartículas/química
15.
Environ Pollut ; 333: 122082, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37343918

RESUMO

Contamination from external hazardous materials may greatly influence the safety and efficacy of herbal medicines. This paper aimed to evaluate the levels of contamination by mycotoxins and toxigenic fungi in herbal medicines and establish a rapid method for detecting toxin-producing fungi. Herein, 62.92%, 36.25%, and 64.17% of herbal medicines were contaminated by aflatoxins (AFs), ochratoxins, and fumonisins, respectively. Aspergillus (43.77%), Fusarium (5.17%), and Cladosporium (4.46%) were the three predominant genera. Spearman's correlation results showed that Aspergillus and Fusarium were significantly and positively correlated with mycotoxin content (R > 0.5, P < 0.05). In addition, 323 fungal strains were isolated from herbal medicines, and 20 species were identified, mainly belonging to Aspergillus and Penicillium. Analysis of potential mycotoxin-producing fungi showed that Aspergillus flavus can produce AFs, and Aspergillus ochraceus and Aspergillus niger can produce ochratoxin A (OTA). Multiplex real-time polymerase chain reaction showed that A. flavus harbored AF synthesis genes (aflR), and A. ochraceus and A. niger harbored OTA synthesis genes (aoksl). With these synthesis genes, 67.07% and 37.20% of 164 herbal medicines were positive for toxigenic genes. Furthermore, an excellent correlation was found between the above gene copies and mycotoxin content (R2 = 0.99). Our results confirmed the high detection rate of mycotoxins in herbal medicines and identified pivotal AF- and OTA-producing fungi. In conclusion, this paper provided the contamination status of fungi and mycotoxins in herbal medicines and established a rapid method for detecting toxigenic fungi.


Assuntos
Aflatoxinas , Fumonisinas , Micotoxinas , Fungos , Aflatoxinas/análise , Fumonisinas/análise , Extratos Vegetais , Contaminação de Alimentos/análise
16.
J Sci Food Agric ; 103(14): 7199-7206, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37347847

RESUMO

BACKGROUND: Mycotoxin monitoring in cereal grains has great importance in the food and feed industries. This study evaluated mycotoxin contamination in corns with different endosperm textures in 2 years of cultivation. Samples of dent, semi-dent, flint and semi-flint corns from field experiments were analyzed by high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). RESULTS: Occurrences of fumonisins B1 (FB1 ) and B2 (FB2 ) in 2020 were 45.72% (mean 270 µg kg-1 ) and 35.89% (94.97 µg kg-1 ), respectively, and 68.98% (446 µg kg-1 ) and 45.83% (152 µg kg-1 ) in 2021. Occurrence of aflatoxin B1 was 11.96% (0.16 µg kg-1 ) in 2020 and 11.11% (0.13 µg kg-1 ) in 2021. In 2020, deoxynivalenol (DON) and zearalenona (ZEA) presented occurrences of 1.28% and 1.70%, with means of 4.08 and 2.45 µg kg-1 , respectively. In 2021, results were 8.33% (31.00 µg kg-1 ) for DON and 8.79% (4.38 µg kg-1 ) for ZEA. Citrinin, diacetoxyscirpenol and fusarenon-X did not occur in 2020 but presented 1.66%, 0.83%, and 2.50% positive rates in 2021, respectively. In 2020, flint corn presented the lowest concentration of FB1 whereas dent corn presented the highest concentration of FB1 and FB2 (P < 0.05). In 2021, dent corn presented the highest means of FB1 , FB2 and diacetoxyscirpenol (P < 0.05). Dent and semi-dent presented the highest concentration of nivalenol (P < 0.05). CONCLUSION: The endosperm texture influenced mycotoxin contamination in corn grains, especially FB1 and FB2 , which had the highest concentration in dent corn in the 2 years of this study. © 2023 Society of Chemical Industry.


Assuntos
Calosidades , Citrinina , Fumonisinas , Micotoxinas , Micotoxinas/análise , Zea mays/química , Endosperma/química , Espectrometria de Massas em Tandem/métodos , Contaminação de Alimentos/análise , Fumonisinas/análise , Citrinina/análise , Grão Comestível/química
17.
Food Chem ; 422: 136226, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37126958

RESUMO

In this study, based on the high-throughput automatic sample pretreatment with immunoaffinity magnetic beads with oriented immobilized antibodies, grain and feed fumonisin (FB) content was detected using pre-column automatic derivatization of high-performance liquid chromatography (HPLC). The FB capacity of well-oriented antibody immunoaffinity magnetic beads was 1.5-1.8 times that of magnetic beads with randomly fixed antibody. This pre-column automatic derivatization method using an autosampler can reduce error from manual injection and improve detection efficiency. The spiked recoveries for three different concentrations in maize, husked rice, and pig feed under optimized conditions were 84.6-104.0% (RSD < 9.3%). Our novel method was also applied to the analysis of FBs in 63 maize samples collected from the main maize-production regions in China. The results showed that as latitude increased, the contamination level of FBs tended to decrease. High temperature and high humidity are also more favorable for FB growth.


Assuntos
Fumonisinas , Animais , Suínos , Fumonisinas/análise , Cromatografia Líquida de Alta Pressão/métodos , Contaminação de Alimentos/análise , Zea mays/química , Fenômenos Magnéticos
18.
Mycotoxin Res ; 39(3): 165-175, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37165150

RESUMO

Breakfast processed products are remarkably at risk of fungal contamination. This research surveyed the fumonisins concentration in different breakfast products and carried out in vitro experiments measuring fumonisins content in different substrates inoculated with Fusarium verticillioides. The pipeline started with the identification of combinations of ingredients for 58 breakfast products. Twenty-three core ingredients, seven nutritional components and production types were analyzed using a Pearson correlation, k-means clustering, and principal component analysis to show that no single factor is responsible for high fumonisins detection in processed cereals products. Consequently, decision tree regression was used as a means of determining and visualizing complex logical interactions between the same factors. We clustered the association of ingredients in low, medium, and high risk of fumonisin detection. The analysis showed that high fumonisins concentration is associated with those products that have high maize concentrations coupled especially with high sodium or rice. In an in vitro experiment, different media were prepared by mixing the ingredients in the proportion found in the first survey and by measuring fumonisins production by Fusarium verticillioides. Results showed that (1) fumonisins production by F. verticillioides is boosted by the synergistic effect of maize and highly ready carbohydrate content such as white flour; (2) a combination of maize > 26% (w/w), rice > 2.5% (w/w), and NaCl > 2.2% (w/w) led to high fumonisins production, while mono-ingredient products were more protective against fumonisins production. The observations in the in vitro experiments appeared to align with the decision tree model that an increase in ingredient complexity can lead to fumonisins production by Fusarium. However, more research is urgently needed to develop the area of predictive mycology based on the association of processing, ingredients, fungal development, and mycotoxins production.


Assuntos
Ingredientes de Alimentos , Fumonisinas , Fusarium , Oryza , Fumonisinas/análise , Grão Comestível/química , Ingredientes de Alimentos/análise , Desjejum , Zea mays/microbiologia , Oryza/microbiologia
19.
Toxins (Basel) ; 15(5)2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37235363

RESUMO

This study investigated effects of dietary fumonisins (FBs) on gut and faecal microbiota of weaned pigs. In total, 18 7-week-old male pigs were fed either 0, 15 or 30 mg FBs (FB1 + FB2 + FB3)/kg diet for 21 days. The microbiota was analysed with amplicon sequencing of the 16S rRNA gene V3-V4 regions (Illumina MiSeq). Results showed no treatment effect (p > 0.05) on growth performance, serum reduced glutathione, glutathione peroxidase and malondialdehyde. FBs increased serum aspartate transaminase, gamma glutamyl-transferase and alkaline phosphatase activities. A 30 mg/kg FBs treatment shifted microbial population in the duodenum and ileum to lower levels (compared to control (p < 0.05)) of the families Campylobacteraceae and Clostridiaceae, respectively, as well as the genera Alloprevotella, Campylobacter and Lachnospiraceae Incertae Sedis (duodenum), Turicibacter (jejunum), and Clostridium sensu stricto 1 (ileum). Faecal microbiota had higher levels of the Erysipelotrichaceae and Ruminococcaceae families and Solobacterium, Faecalibacterium, Anaerofilum, Ruminococcus, Subdoligranulum, Pseudobutyrivibrio, Coprococcus and Roseburia genera in the 30 mg/kg FBs compared to control and/or to the 15 mg/kg FBs diets. Lactobacillus was more abundant in the duodenum compared to faeces in all treatment groups (p < 0.01). Overall, the 30 mg/kg FBs diet altered the pig gut microbiota without suppressing animal growth performance.


Assuntos
Fumonisinas , Microbiota , Suínos , Animais , Masculino , Fumonisinas/análise , RNA Ribossômico 16S/genética , Dieta/veterinária , Fezes/microbiologia , Ração Animal/análise
20.
Mycotoxin Res ; 39(3): 177-192, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37219742

RESUMO

The present work investigated the potential of fungal species from grain maize farms in Malaysia as antagonists against the indigenous mycotoxigenic fungal species and their subsequent mycotoxin production. Dual-culture assay was conducted on grain maize agar (GMA) with 12 strains of potential fungal antagonists namely Bjerkandra adusta, Penicillium janthinellum, Schizophyllum commune, Trametes cubensis, Trichoderma asperelloides, Trichoderma asperellum, Trichoderma harzianum, and Trichoderma yunnanense against seven mycotoxigenic strains namely Aspergillus flavus, Aspergillus niger, Fusarium verticillioides, and Fusarium proliferatum producing aflatoxins, ochratoxin A, and fumonisins, respectively. Based on fungal growth inhibition, Trichoderma spp. showed the highest inhibitory activity (73-100% PIRG, Percentage Inhibition of Radial Growth; 28/0 ID, Index of Dominance) against the tested mycotoxigenic strains. Besides, B. adusta and Tra. cubensis showed inhibitory activity against some of the tested mycotoxigenic strains. All fungal antagonists showed varying degrees of mycotoxin reduction. Aflatoxin B1 produced by A. flavus was mainly reduced by P. janthinellum, Tra. cubensis, and B. adusta to 0 ng/g. Ochratoxin A produced by A. niger was mainly reduced by Tri. harzianum and Tri. asperellum to 0 ng/g. Fumonisin B1 and FB2 produced by F. verticillioides was mainly reduced by Tri. harzianum, Tri. asperelloides, and Tri. asperellum to 59.4 and 0 µg/g, respectively. Fumonisin B1 and FB2 produced by F. proliferatum were mainly reduced by Tri. asperelloides and Tri. harzianum to 244.2 and 0 µg/g, respectively. This is the first study that reports on the efficacy of Tri. asperelloides against FB1, FB2, and OTA, P. janthinellum against AFB1, and Tra. cubensis against AFB1.


Assuntos
Fumonisinas , Fusarium , Micotoxinas , Micotoxinas/análise , Zea mays/microbiologia , Agentes de Controle Biológico , Trametes , Fumonisinas/análise , Grão Comestível/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...